
What are Coding Conventions?

Coding conventions are a set of guidelines for a specific programming language that recommend
programming style, practices and methods for each aspect of a piece program written in this language.
These conventions usually cover file organization, indentation, comments, declarations, statements, white
space, naming conventions, programming practices and etc. Software programmers are highly
recommended to follow these guidelines to help improve the readability of their source code and make
software maintenance easier. Coding conventions are only applicable to the human maintainers and peer
reviewers of a software project. Conventions may be formalized in a documented set of rules that an
entire team or company follows, or may be as informal as the habitual coding practices of an individual.
Coding conventions are not enforced by compilers. As a result, not following some or all of the rules has
no impact on the executable programs created from the source code.

General Coding Standards
1. Follow patterns that have been established (for instance naming, conventions of how to do

certain functions, documentation, ...)
2. Be consistent with how things are coded
3. Favor object oriented solutions over linear programming
4. Strive to make the code easy to follow and understand
5. Avoid long chunks of code (for instance large methods, over 100 lines or so)
6. Follow SRP ('Single Responsibility Principle') and DRY ('Don't Repeat Yourself')
7. Use Generics where possible
8. Organize logical groupings:

• Methods that are related, getter/setters towards bottom, following other class organization
with similar methods

• Code blocks that are related
• Use blank lines to separate code blocks and make code more readable (after control

statements, before return, a few lines of related code or variables)
• Avoid hard coding strings (use instead constants or external resources) with the

exception of log or exception strings
• Avoid deeply nested control statements

9. Remove unused code (not comment out), if commenting out code temporally or for reference,
place a TODO item before the block

	

Files
Here is a listing of commonly used file types in Kuali projects:

File	
 Type	
 Example	
 Common	

Extension	

Primary	
 Use	

Java	
 source	
 file	
 DocumentStatus.java	
 .java	
 Source	
 code	

Java	
 bytecode	
 file	
 DocumentStatus.class	
 .class	
 Compiled	
 code	

JSP	
 files	
 ServiceRegistry.jsp	
 .jsp	
 Java	
 Server	
 Pages,	
 dynamically	

compiled	
 markup	

Ant	
 files	
 build.xml	
 .xml	
 High-­‐level	
 configuration	
 of	
 build	

process	

Maven	
 files	
 pom.xml	
 .xml	
 Configuration	
 of	
 build	
 and	

dependency	
 management	

process	

Spring	
 configuration	

file	

KIMImplementationSpringBeans.xml	
 .xml	
 Configuration	
 of	
 dependency	

injection	

SQL	
 files	
 update_client_final_oracle.sql	
 .sql	
 Database	
 scripts	
 for	
 ddl	
 changes	

XML	
 Schema	

Documents	

DocumentType.xsd	
 .xsd	
 Rules	
 for	
 XML	
 document	

conformance	

Web	
 Services	

Description	
 Language	

(WSDL)	
 files	

WorkflowDocumentActionsService.wsdl	
 *.wsdl	
 WSDL	
 is	
 an	
 XML	
 format	
 for	

describing	
 SOAP	
 web	
 services	

Properties	
 files	
 system-­‐message.properties	
 .properties	
 Managing	
 key/value	
 properties	

for	
 configuration,	
 sometimes	

loaded	
 at	
 build-­‐time	

Kuali	
 config	
 files	
 rice-­‐config.xml	
 .xml	
 Maintaining	
 system	

configuration	
 details,	
 often	

loaded	
 at	
 deployment	

Kuali	
 data	
 dictionary	

files	

Country.xml	
 .xml	
 Configuring	
 the	
 data	
 dictionary,	

can	
 often	
 be	
 loaded	
 at	
 runtime	

Directory organization
Generally in Kuali, files are organized into projects (e.g. Rice), and these projects are then divided into
folders or directories. In the case of source code or other resource files, they are often further divided into
Java packages or directory hierarchies.

It is common to break out the source folders into the following structure:

• api : interfaces and simple classes that will be shared
• impl : implementation classes
• web : uncompiled (at build time) files that need to be deployed as part of the webapp

The first two (api and impl) are generally compiled and deployed as jar files under the WEB-INF/lib
directory of the third.

Indentation

Tabs
Kuali projects (at least Rice and KFS) seem to use the default Eclipse code formatter for Java, with the
following settings for Indentation:

Name	
 Setting	

Tab	
 policy	
 Tabs	
 only	

Use	
 spaces	
 to	
 indent	
 wrapped	
 lines	
 No	

Indentation	
 size	
 4	

Tab	
 size	
 4	

Line Length
Lines of code should readable without horizontal scrolling, or ~160 characters

Line Wrapping
From the Java Programming Language Code Conventions document:

When an expression will not fit on a single line, break it according to these general principles:

• Break after a comma.
• Break before an operator.
• Prefer higher-level breaks to lower-level breaks.
• Align the new line with the beginning of the expression at the same level on the previous line.
• If the above rules lead to confusing code or to code that's squished up against the right margin,

just indent instead.

Comments
All source files need to include the appropriate Educational Community License statement, as well as
reasonable Javadoc comments at the type, method, and field levels, and additional developer comments
to promote clarity of code and support long-term maintenance.

Declarations
• Declare one variable per line
• Initialize variables in their declaration, unless the initial value depends on some calculation that

makes this unfeasible
• In general, variables should be declared at the beginning of a block

Constants
• Use constants in favor of literals
• Business values (i.e. ones that may change based on institutional preferences) should not be

constants, but should be (preferably) made into system parameters that can be modified in
persistent store at runtime, or at worst configuration parameters that will be incorporated at build
time

• Enums should be preferred over constants when dealing with multiple related values

Statements
• Enter one statement per line and in general avoid using semi-colons to produce lines with multiple

statements.
• One exception is the for loop, where something like "for(int i=0;i<10;i++)" is common and

accepted practice in Java programming.
• Do not use parentheses to identify the argument of a return statement unless it is essential to the

readability or function of that statement (for example, to enforce mathematical precedence).

White space
• Use blank lines to improve readability of code by setting off logical sections
• Method declarations should always be preceded and followed by at least one blank line
• Binary operators should generally be separated from their operands by white spaces

	

Naming conventions
In general, the normal conventions for programming in Java should be followed. Here is a copy of the text
from the Java Programming Language Coding Conventions mentioned above:

Identifier	

Type	

Rules	
 for	
 Naming	
 Examples	

Packages	
 The	
 prefix	
 of	
 a	
 unique	
 package	
 name	
 is	
 always	
 written	
 in	
 all-­‐lowercase	

ASCII	
 letters	
 and	
 should	
 be	
 one	
 of	
 the	
 top-­‐level	
 domain	
 names,	
 currently	

com,	
 edu,	
 gov,	
 mil,	
 net,	
 org,	
 or	
 one	
 of	
 the	
 English	
 two-­‐letter	
 codes	

identifying	
 countries	
 as	
 specified	
 in	
 ISO	
 Standard	
 3166,	
 1981.	

Subsequent	
 components	
 of	
 the	
 package	
 name	
 vary	
 according	
 to	
 an	

organization's	
 own	
 internal	
 naming	
 conventions.	
 Such	
 conventions	
 might	

com.sun.eng	

com.apple.quicktime.v2	

edu.cmu.cs.bovik.cheese	

specify	
 that	
 certain	
 directory	
 name	
 components	
 be	
 division,	
 department,	

project,	
 machine,	
 or	
 login	
 names.	

Classes	
 Class	
 names	
 should	
 be	
 nouns,	
 in	
 mixed	
 case	
 with	
 the	
 first	
 letter	
 of	
 each	

internal	
 word	
 capitalized.	
 Try	
 to	
 keep	
 your	
 class	
 names	
 simple	
 and	

descriptive.	
 Use	
 whole	
 words-­‐avoid	
 acronyms	
 and	
 abbreviations	
 (unless	

the	
 abbreviation	
 is	
 much	
 more	
 widely	
 used	
 than	
 the	
 long	
 form,	
 such	
 as	

URL	
 or	
 HTML).	

class	
 Raster;class	

ImageSprite;	

Interfaces	
 Interface	
 names	
 should	
 be	
 capitalized	
 like	
 class	
 names.	
 interface	
 RasterDelegate;	

interface	
 Storing;	

Methods	
 Methods	
 should	
 be	
 verbs,	
 in	
 mixed	
 case	
 with	
 the	
 first	
 letter	
 lowercase,	

with	
 the	
 first	
 letter	
 of	
 each	
 internal	
 word	
 capitalized.	

run();	
 	

runFast();	
 	

getBackground();	

Variables	
 Except	
 for	
 variables,	
 all	
 instance,	
 class,	
 and	
 class	
 constants	
 are	
 in	
 mixed	

case	
 with	
 a	
 lowercase	
 first	
 letter.	
 Internal	
 words	
 start	
 with	
 capital	
 letters.	

Variable	
 names	
 should	
 not	
 start	
 with	
 underscore	
 _	
 or	
 dollar	
 sign	
 $	

characters,	
 even	
 though	
 both	
 are	
 allowed.	

Variable	
 names	
 should	
 be	
 short	
 yet	
 meaningful.	
 The	
 choice	
 of	
 a	
 variable	

name	
 should	
 be	
 mnemonic-­‐	
 that	
 is,	
 designed	
 to	
 indicate	
 to	
 the	
 casual	

observer	
 the	
 intent	
 of	
 its	
 use.	
 One-­‐character	
 variable	
 names	
 should	
 be	

avoided	
 except	
 for	
 temporary	
 "throwaway"	
 variables.	
 Common	
 names	
 for	

temporary	
 variables	
 are	
 i,	
 j,	
 k,	
 m,	
 and	
 n	
 for	
 integers;	
 c,	
 d,	
 and	
 e	
 for	

characters.	

int	
 i;	

char	
 c;	

float	
 myWidth;	

Constants	
 The	
 names	
 of	
 variables	
 declared	
 class	
 constants	
 and	
 of	
 ANSI	
 constants	

should	
 be	
 all	
 uppercase	
 with	
 words	
 separated	
 by	
 underscores	
 ("_").	
 (ANSI	

constants	
 should	
 be	
 avoided,	
 for	
 ease	
 of	
 debugging.)	

static	
 final	
 int	

MIN_WIDTH	
 =	
 4;	

static	
 final	
 int	

MAX_WIDTH	
 =	
 999;	

static	
 final	
 int	

GET_THE_CPU	
 =	
 1;	

	

Kuali Rice Naming Standards

Package Naming Standards
Package names should reflect to the largest extent possible the module that they are in. Generally, this
means they should follow a pattern like the following for the package prefix:

org.kuali.rice.<module>.<sub-module (optional)>.<domain>

Each of the portions of the package name are defined as follows:

• module - the module is the high-level module name for a particular component of Kuali Rice. The
module itself does not have any code directly associated with it (in otherwords, no jar is
produced), instead the module is divided into a series of sub-modules that contain code.
Examples of Rice modules include: kew, kim, krad, ksb, etc.

• sub-module - a sub-module is a smaller unit of a larger module. It contains code and resources
that are compiled and assembled into a jar file. In general, a sub-module uses one of a standard
set of orientations which determines it's role within the larger Kuali Rice stack as well as how it is
invoked. Examples there are currently 4 different sub-module orientations defined in Kuali Rice:

1. api
2. framework
3. impl
4. web

• domain - the domain represents the specific functional portion of the module which correspond to
some logical domain. For example, in KIM this might include group, identity, role, etc. In certain
cases classes may cross multiple domains in which case a "shared" package should be used. For
framework modules like KRAD, they may skip the sub-module concept altogether and instead be
packaged based on domain (i.e. document, uif, bo, dd, etc.)

As an example, the package prefixes for the various KIM modules would look like the following:

• org.kuali.rice.kim.api.*
• org.kuali.rice.kim.framework.*
• org.kuali.rice.kim.impl.*
• org.kuali.rice.kim.web.*

This portion of the package will generally correspond to the maven module. So in the above example,
each of these package names would encompass the following maven modules:

• rice-kim-api
• rice-kim-framework
• rice-kim-impl
• rice-kim-web

As mentioned previously, within each of those modules it is expected that further non-Maven defined
modularization of the module be handled via a further breakdown of package names based on domain.

For example, in KIM the following breakdown of domains makes sense:

• identity
• group
• role
• permission
• responsibility
• shared

In which case, KIM would be further broken down into packages as follows:

• org.kuali.rice.kim.api.identity.*
• org.kuali.rice.kim.api.group.*
• org.kuali.rice.kim.api.role.*
• org.kuali.rice.kim.api.permission.*
• org.kuali.rice.kim.api.responsibility.*
• org.kuali.rice.kim.api.shared.*

Finally, we should discontinue use of a "layer-based" approach to packaging our source code.
Packaging according to layer instead of domain/feature is generally considered a bad practice [2].

Some of these that we have used previously which we should discontinue use of are as follows:

• service
• dto
• dao
• bo
• etc...

Package structures that are nested deeper than the domain level should be used judiciously. Such cases
where it deemed that is necessary should be considered carefully. One specific case where this is
necessary is when packaging object that are tied to a specific version of Rice (such as dtos and services
used for remoting). In these cases, underneath the domain level should be a package that include a
version id, as follows:

org.kuali.rice.<module>.<sub-module>.<domain>.<version id>

The version id should start with the letter "v" and contain the major and minor version numbers separated
by underscores, as in the the following examples:

• v1_1
• v1_2
• v1_3
• v2_0

Note that we do not need to include the patch version number as part of this version id because patch
releases should not introduce any changes that affect version compatibility.

So, in KIM this might look like:

• org.kuali.rice.kim.api.group.v1_1.*
• org.kuali.rice.kim.api.identity.v1_1.*
• etc.

	

Database Table and Column Name Standards

Max Identifier Lengths on Common RDBMS:
RDMBS	
 Table	
 Name	
 Max	
 Length	
 Column	
 Name	
 Max	
 Length	

Oracle	
 30	
 30	

MySQL	
 64	
 64	

Derby	
 128	
 128	

PostgreSQL	
 31	
 31	

SQL	
 Server	
 128	
 128	

DB2	
 128	
 128	

Sybase	
 30	
 30	

Sap	
 DB	
 32	
 32	

As can be seen there are a couple of databases (most notably Oracle) which restrict Table and Column
name length to 30 characters. So our target should be 30 characters or less.

Tables, Views and Sequences
Because of the 30 character restriction, we need to design our database object name prefixes so that
they take up the least amount of that space while still being descriptive enough.

We will use the following standard prefix:

<Application Acronym><2-letter Module Acronym>_

For Kuali Rice, this will be:

Rice	

Module	

Prefix	
 Pre-­‐Refactoring	
 Notes	

KSB	
 KRSB_	
 • Quartz	
 table	
 names	
 should	
 begin	
 with	
 KRSB_	
 (in	
 Rice	
 standalone)	
 as	
 well	

• Many	
 of	
 the	
 current	
 tables	
 begin	
 with	
 EN_	

• EN_SERVICE_DEF_DEUX_T	
 should	
 be	
 renamed	
 to	
 something	
 like	
 KRSB_SVC_DEF_T	

KNS	
 KRNS_	
 Majority	
 of	
 tables	
 currently	
 prefixed	
 with	
 one	
 of:	

• FS_	

• SH_	

• FP_	

KEW	
 KREW_	
 Tables	
 are	
 currently	
 prefixed	
 with	
 EN_	

KIM	
 KRIM_	
 	
 	

KEN	
 KREN_	
 • Most	
 tables	
 currently	
 prefixed	
 with	
 NOTIFICATION_	

• KCB	
 tables	
 should	
 be	
 included	
 under	
 KREN_	
 as	
 well	

	
 	
 	
 Table Naming Standards

1. Table names should start with <Application Acronym><2-letter Module Acronym>_
2. Table names should end in _T
3. Full table name should be no longer than 30 characters.
4. Table names should consist only of capital letters and underscores

5. Reasonable abbreviations should be used where possible
6. Separate words should be separated by underscores

View Naming Standards

Standards are the same as for Tables Names with the exception of:

• View names should end in _V
Sequence Naming Standards

Standards are the same as for Tables Names with the exception of:

• Sequence names should end in _S

Columns
Column names on tables and views should not contain prefixes or suffixes. Also, there are a few cases in
our current column names where we are duplicating parts of the table names. This is a bit redundant and
should be eliminated. For example, on EN_ACTN_RQST_T there are columns named
ACTN_RQST_RECP_TYP_CD, ACTN_RQST_PRIO_NBR, etc. Where they could be named just
RECP_TYP_CD, PRIO_NBR, etc. This would serve to make the column names as compact as possible

Besides what mentioned above, the rules for column are similar to those for table names.

Column Naming Standards

1. Column names should contain no standard prefix
2. Column names should contain no standard suffix
3. Full column name should be no longer than 30 characters
4. Column names should consist only of capital letters and underscores
5. Reasonable abbreviations should be used where possible
6. Separate words should be separated by underscores
7. Column names should not be prefixed with portions of the table name unless necessary.

Examples from the KEW Action Request table:
• use ID for a primary key identifier rather than ACTN_RQST_ID
• use STAT_CD instead of ACTN_RQST_STAT_CD
• use CRTE_DT instead of ACTN_RQST_CRTE_DT

Primary Keys, Foreign Keys, Indexes and
Unique Constraints
The naming standards are very similar for PKs, FKs, indexes and unique constraints:

Key / Index / Constraint Naming Standards

• for primary keys:
• <table_name w/out the trailing T>PK

• for foreign keys:
• <table_name w/out the trailing T>FK<#>

• For indexes and constraints:
• <table_name><type><#> where type is I for indexes and C for unique constraints.

numbering starts at 1, and increments for each additional element of the same type.

Examples using the table name KRMS_CNTXT_T:

the primary key:
KRMS_CNTXT_PK

indexes (indices?):
KRMS_CNTXT_TI1
KRMS_CNTXT_TI2
KRMS_CNTXT_TI3

foreign keys:
KRMS_CNTXT_FK1
KRMS_CNTXT_FK2

unique constraints:
KRMS_CNTXT_TC1
KRMS_CNTXT_TC2

Exceptions to Standards
In some cases it is not possible to follow these naming standards. This is a particular problem if using
vended libraries which have their own pre-defined table names.

Quartz is an example of this. However, Quartz does provide the ability to specify custom table prefixes.
Such features should be taken advantage of when they are available.

See the table at the top of this document which indicates how the Quartz tables should be prefixed in the
case of Kuali Rice.

Abbreviations
Before using any abbreviation in any of the database identifiers, an attempt should be made to establish if
an abbreviation has already been used in other tables for that same word. Some examples, of common
abbreviations seen throughout Rice are below:

Word	
 Abbreviation	

action	
 ACTN	

code	
 CD	

date	
 DT	

description	
 DESC_TXT	

document	
 DOC	

header	
 HDR	

identifier	
 ID	

indicator	
 IND	

namespace	
 NMSPC	

parameter	
 PARM	

request	
 RQST	

title	
 TTL	

type	
 TYP	

version	
 number	
 VER_NBR	

...	
 ...	

This is by no means exhaustive but demonstrates the general idea when choosing abbreviations.
	

Programming practices

Autoboxing and Auto-Unboxing of Primitive Types
Beginning with Java 5, primitive types are autoboxed or auto-unboxed as necessary by the Java compiler.
This can helpful, since it reduces the need for extensive casting of primitives into their corresponding
Object, for example: to place a primitive int into a Collection.

However, it is important to remember that auto-unboxing (converting an Object into its primitive type at
assignment) can throw a NullPointerException if that Object is null at the point of assignment. This is true
generally, but auto-unboxing can make it more difficult to recognize when glancing over some code, since
statements like this one don't generally make developers think they need to check for nulls:

int x = y;

Only if y is an Integer, then it might be null. Using a static code checker like FindBugs will address this,
and Eclipse has a configuration setting under Preferences > Java > Errors/Warnings > Potential
programming problems > Boxing and unboxing conversions that will make these jump out.

Generics
Use Java generics with Collections to indicate type, especially on method return values, to reduce the
need for unchecked casting and to improve readability of code by developers coming after you.

Generics may also be particularly useful when developing wrapper classes, or interfaces that may be
implemented to work with a specific type or some small set of distinct types.

Inversion of Control
TODO: Service locator versus dependency injection...

Programming for Accessible Web Applications

Web Content Accessibility Guidelines
In order that Kuali applications can be made accessible to the broadest possible audience, it is
recommended that developers follow the guidelines laid out in the W3C Recommendation on Web
Content Accessibility Guidelines (WCAG) 2.0, specifically that user interface code or output that may
eventually be surfaced in a user interface developed for the project be:

1. Perceivable
a. Provide text alternatives for any non-text content so that it can be changed into other

forms people need, such as large print, braille, speech, symbols or simpler language.
b. Provide alternatives for time-based media.
c. Create content that can be presented in different ways (for example simpler layout)

without losing information or structure.
d. Make it easier for users to see and hear content including separating foreground from

background.
2. Operable

a. Make all functionality available from a keyboard.
b. Provide users enough time to read and use content.
c. Do not design content in a way that is known to cause seizures.
d. Provide ways to help users navigate, find content, and determine where they are.

3. Understandable
a. Make text content readable and understandable.
b. Make Web pages appear and operate in predictable ways.
c. Help users avoid and correct mistakes.

4. Robust
a. Maximize compatibility with current and future user agents, including assistive

technologies.

General
1. All exposed API elements should have meaningful javadoc which documents the contract for the

API.
2. Internal classes and methods (with the exception of very simple getters/setters like service

injection) should have a meaningful javadoc
3. All method parameters and return types (except for void methods) should be documented

4. Any unchecked exceptions that the method can throws should be documented using the
Javadoc @throws tag

• examples: IllegalArgumentException, IllegalStateException, NullPointer
Exception, etc.

• do not use the throws keyword to include unchecked exceptions in the method
declaration except in the case of JAX-WS annotated services where this is required in
order for meaningful soap faults to be produced

5. Add line comments to explain code intent and outline the process, but use these only when
needed. Code should be as self-documenting as possible.

Format
1. First line of javadoc should be a short summary (one or two sentences) of the method. No blank

line before summary
2. Additional detailed information should be enclosed in a paragraph (<p>) tag with a blank line

before each paragraph
3. One blank line between the method descriptions and the list of tags
4. for tag phrases (e.g. parameters) use phrases (do not start with capital letter or end with a period)
5. For inline comments use // followed by a space
6. For inline comments do not capitalize first letter or end with period
7. For field Javadocs, give description on getter where exist, else the field. Setter can have generic

statement or if needed special information about the setter
Method/Class Javadocs

Good:

/**
* Determines the primary key for the data object
*
* <p>
* The primary key is found by
*
</p>
*
* @param dataObject - data object instance to retrieve primary key for
* @return String primary key found, or null
*/

Bad:

/**
*
* Determines the primary key for the data object. The primary key ...
....
* @param dataObject data object instance to retrieve primary key for.
* @return String primary key found, or null
*/

Note: Blank line before summary, should have paragraph for more detailed
information,
no blank line before param tag, no dash after param tag and period after
param tag description
Inline Comments

Good:

// attempt to find the key

Bad:

//Attempt to find the key.

Style
1. Method comments should begin with a verb (avoid 'This method ...')
2. Class/interface/field comments should state the object (avoid 'This interface/class ...')
3. Set the @author tag in the Class javadoc to 'Kuali Rice Team (rice.collab@kuali.org)'
4. Use the Javadoc {@code ...} tag for keywords and names
5. Use 3rd person (descriptive) not 2nd person (prescriptive) ('Gets the label' not 'Get the label')
6. Use "this" instead of "the" when referring to an object created from the current class ('Gets the

toolkit for this component' not 'Gets the toolkit for the component')
7. Avoid use of end-line comments

Content
1. Add description beyond the API name
2. As much as possible, write doc comments as an implementation-independent API specification
3. Make it complete enough for conforming implementers
4. Describes why the code is doing what it does
5. Include examples
6. Specify implementation specific behavior in a separate paragraph
7. For property getters, specify what the returned field is used for (field javadoc)
8. Use @see for interface implementations, overridden methods, setters for properties (point to

getter). Add additional comments if necessary

See http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html for more details

Documenting Thread Safety
To enable safe concurrent use of exported API elements, a class must clearly document it's thread safety
policy. The presence of the synchronized modifier does not satisfy proper documentation of thread
safety, this is because the synchronized keyword is an implementation detail and not part of the
exported API.

There are multiple levels of thread safety, the following are from the book Effective Java:

• immutable - Instances of this class appear constant. No external synchronization is necessary.
Examples include String, Long, BigInteger, etc., in addition to the various immutable model
object classes that can be found throughout the Rice APIs.

• unconditionally thread-safe - Instances of this class are mutable, but the class has sufficient
internal synchronization that its instances can be used concurrently without the need for any
external synchronization. Examples include Random and ConcurrentHashMap.

• conditionally thread-safe - Like unconditionally thread-safe, except that some methods require
external synchronization for safe concurrent use. Examples include the collections returned by
Collections.synchronized wrappers, whose iterators require external synchronization.

• not thread-safe - Instances of this class are mutable. To use them concurrently, clients must
surround each method invocation (or invocation sequence) with external synchronization of the
clients' choosing. Examples include the general-purpose collection implementations such
asArrayList and HashMap.

• thread-hostile - This class is not safe for concurrent use even if all the method invocations are
surrounded by external synchronization. Thread hostility usually results from modifying static data
without synchronization. No one writes a thread-hostile class on purpose; such classes result
from the failure to consider concurrency. Luckily, there are very few thread-hostile classes or
methods in the Java libraries. The System.runFinalizersOnExitmethod is thread-hostile
and has been deprecated.

Naming Conventions
1. Use names that have meaning (not i, j, .. with the exception possibly of loop counters)
2. Follow naming patterns that have been established for similar types of classes, variables, and

methods
3. In general avoid abbreviations, with the exception of very well known abbreviations or to prevent

excessively long names
4. Names use camel casing with first letter upper-cased for class names and lower cased for

method and variable names
5. Use nouns when naming classes and fields, verbs when naming methods
6. Pluralize the names of collection references

Code Cleanup (on new/changed code)
1. Perform formatting (before check-in)
2. Perform code cleanup
3. Organize imports
4. Fix warnings where possible

	

Deprecating Code
1. Mark the method/class/package/etc. with @Deprecated annotation. This compiles the object's

deprecated status in the .class file (and can even be accessed with reflection). When a client
compiles against the class file, the compiler will issue a warning regardless of whether
source/javadoc is present.

2. Mark the method/class/package/etc. with @deprecated javadoc tag. Unlike, the annotation this
tag allows us to put a description what why the thing is deprecated and what to do.

UIF Specific
1. Group together lifecycle methods in order (initialize, applyModel, finalize)
2. Make methods public/protected to allow for overriding any behavior
3. Strive to provide declarative options (via XML) where possible

	

